Движения ионов в электролитах

Раздел: 
Русская Физика

Движения ионов в электролитах.

   Отказавшись от притяжения, мы обязаны по-новому взглянуть на такой процесс, как движение ионов в электролитах. Факт их движения в сторону электродов противоположного знака неоспорим, но также хорошо известно, что без перемешивания электролита гальванический процесс почти полностью стопорится. В чем дело?
   Возьмем раствор медного купороса, опустим в него электроды и подведем к ним электрическое напряжение; с отрицательного электрода  —  катода  —  электроны будут поступать в электролит, а из него  — на положительный электрод  —  на анод. Вода, как  известно, разбивает молекулу купороса на ион меди (атом с недостатком электронов) и на ион сернокислого остатка (с их избытком). Проследим за поведением отдельных ионов: меди — катиона и кислотного остатка — аниона.
   Из раствора к катиону устремятся электроны, и не один, и не два, а тысячи и тысячи  —  именно столько способен абсорбировать ион. Электроны сначала будут направляться к нему со всех сторон, но очень скоро главным направлением их движения будет  —  от катода. Они понизят эфирное давление с его стороны, и разность эфирного давления сместит ион меди туда же. Как только ион насытится электронами, его движение приостановится. Приблизительно такой же маленький шажок совершит и анион, но только повышенная активность электронов возле него окажется со стороны анода: именно туда устремятся его избыточные электроны, и туда сместится он сам. Избавившись от лишних электронов, анион остановится. Остановившиеся нейтрализованные атомы меди и сернокислый остаток перестают принимать участие в гальваническом процессе и  будут неподвижными до тех пор, пока судьба не столкнет их друг с другом; для этого как раз и необходимо перемеши-вание раствора. При столкновении сернокислый остаток отберет у атома меди электроны; они разойдутся, и ситуация повторится. Так, шаг за шагом, будут двигаться в нужных направлениях все ионы электролита.
   Уткнувшийся в электрод атом меди может успеть в оголенном виде прилипнуть к нему, но если он в этот момент окажется уже облепленным электронами, то не сможет прилипнуть и будет дрейфовать в полной  независимости. Этим объясняется поведение неплотного, рыхлого гальванического покрытия, в котором металл представлен в атомарном виде.
   Иная судьба  —  у сернокислого остатка: добравшись до анода, он оторвет от него атом металла (той же меди), уйдет с ним в  раствор, и там они разойдутся; оголенный ион меди устремится в долгий путь к катоду навстречу идущим к нему электронам, а сернокислый остаток вернется к аноду и повторит свои действия. Если бы не было перемешивания электролита, то все кислотные остатки сгрудились бы рано или поздно возле анода и переводили бы материал анода в атомарное состояние; и только наличие кислотных остатков во всем пространстве раствора (а это достигается перемешиванием) способствует смещению ионов меди до самого упора в катод.
   Более сложные процессы с движениями ионов происходят в гальванических элементах, например в элементе Вольта, который представляет собой медный и цинковый электроды, помещенные в раствор серной кислоты. Особенность процесса состоит в том, что сернокислый остаток по-разному соединяется с медью и цинком . Когда он отрывает от электрода атом меди и присоединяет его к себе, то вместе с ним ув-лекает и все электроны, что были прежде а нем; в результате плотность электронов на электроде снижается. В физике такая способность атомов металлов либо забирать электроны с собой, либо, наоборот, их отдавать характеризуется абсолютным нормальным потенциалом; у меди он равен плюс 0,61 Вольта.
   Когда же происходит соединение сернокислого остатка с атомом цинка другого электрода, то  все наружные электроны атома и часть их остатка отжимаются и сдвигаются на электрод; в результате плотность электронов на нем увеличивается (абсолютный нормальный потенциал цинка равен минус 0,50 Вольта). Такие особенности окисления вызваны только конфигурациями атомов меди и цинка и их присасывающи-ми желобами; эти свойства металлов постоянны и неизменны.
   После того, как образовались молекулы медного и цинкового купоросов, они уходят в раствор и там, спустя некоторое время, распадаются под действием воды на ионы. При распаде молекул их электроны перераспределяются между ионами следующим образом: сернокислый остаток медного купороса оттягивает на себя большую часть электронов с атома меди и приобретает очень высокую их плотность, а сернокислый остаток молекулы цинкового купороса, забрав последние электроны с иона цинка, оголяет его начисто. Это приводит к тому, что между сернокислым остатком медного купороса и ионом цинка появляется поток электронов; он уменьшает эфирное давление между ними, и они устремляются друг к другу. Столкнувшись и соединившись, они образуют снова молекулу цинкового купороса, и снова цинк вытесняет все электроны. Но, обратим внимание на то, что эти электроны уже совершили скачок от медного электрода в сторону цинкового; так они будут шаг  за шагом перемещаться в этом направлении, пока их не остановит разность электронных потенциалов на электродах. Если эту разность понижать путем использования электронного тока, то гальванический процесс будет продолжаться до тех пор, пока весь медный электрод не выпадет в атомарный осадок, или весь цинк не превратится в купорос.

 

К оглавлению                Назад        обсуждение        Далее                Следующий раздел или книга